


()

‘jw Find the equation of the circle lying on the sphere

X4yl +z° 2_2y-4z=11 and having its centre

IR T R R VAT St gl

(v) Find the total area of the circle x>+ y* +2x=9.
/ If I, = J:M tan” xdx, for n>2, find the value of
SRR 0 b

)yﬁ) Fmd the asymptotes of the curve x> +y’ =3axy.

(i) Find the mteglatmg factox; of

e

ular sa‘luugn of-y o _(dy] .

o). Fmd the nature of the comc
3x +2xy+3y —l6x+20 0

(xi) Calculate the sum of the recnprocals of two
perpendtcular focal chord of the canic

e %"l-beeosﬂ
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Harmomc Progressmn and n be a posmve mteger_

greater than 1 then prove that a +c ~'—2b" e Sa

) Geometrlcally represent‘ the complex number |

7 \k\

(c) Fmd the condltlons that the roots of the equatron =
! +px +qx +rx+s OaremGP ‘

. —\'; 3

. e 7 LPTO:
. V-1/32-1200 iy




(2)

}d’ Apply Descartes rule of s1gns to determme the
nature of the rcots of the equatlon

X +x +x - 1—0;\ i
* /(d) Dlmlmsh the roots of 4x —-8x —19x+38 Qe
 by2. N

Sas »‘ (DIf a, b e Z, not both zero such that gcd(a b) =
f’ ‘f‘»’f?-"‘?{}’ a u+ b v prove that gcd (u v) 1 where

i i""where m eZ

J

: ;Show that the subspace U + W is the smallest
S subspace of vector space V contammg the

:f:‘subspaces U and W
/m For what real values ofk is the set: it
| {(k‘-l.l 1) (1%, 11) (1 1, k 1) (1 1 1 k)}

linearly lndependent m vector spaoe R




G
(m) Let V and W be vector spaces over a field F, and

T: VoW be a linear mappmg Prove that T is
mjectlve if and only if KerT'={60}.

Use Euchdean algorlthm to find mtegers u and v
satlsfymg 52u— 91v 78

/cds Use va1snon algorlthm to show that the cube of ,
any mteger 1s of the form 9k or 9k +1 k = Z B

(c) Show that the equatlon Sobda N el
(x-a)’ +(x- bY +(x= c) +(x 'd)"_o where“g
e b c, d are not all equal has only one real root

If a, ,B 7 be the roots of the equanon
Lix? +px +qx+r 0 then form the equauon _

. ,.whose roots are a+_l_, ,B+-.l.-_, },+_1_.‘
& i) ,

Y

‘PT.O.

’ V-1/32-1200




L
(/e) Find a basis and dlmensmn of the subspace

Sof R® defined by TR
{(x y,z)e R?:2x+y- z= O}

-‘\' TR

(t) Use the prmmple of induction to fprove that
‘ -2 7" . 3. 5" '5 is d1V1s1ble by 24, Vne N.

Group C

e
SR '\\‘ >

Answer any two questlons

(b) Prove that m the euqatlon f (x) O W1th_real 7

coefﬁments unagmary roots occur in conJugate patrs

(a) Solve the equatlon x~—3x +]2x+]6 0 by S

1

Cardan S method L

(b) State Cayley-Hanulton theorem Usmg the theorem

desenb,:a method of computmg A7 when A is a
eular square 1 6+(1+3) ‘




1)
12

(0)
]

5 @I
Ry

(

(1)
1

1

\1

5

are the .eigen vectors

»

on*espondmg the eigen values 1, 2, O of the real

AN TR
AR

~ e quare mat1 1x A of order 3, then find A.

= (b) Fmd a lmear mappmg T:K —>IR3 such that

R

(b) If z cos:£{915+1 z» sm (9 and m € Z

a)fFor“‘what value of k the planes x 4 y+52 k

Im T 1s the subspace

{(x y,a)eR3 x+y+z 0} | .5‘445,

then show that :

(4+2)+4
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Answer any four questions. 4x12

1. (a) Find the equation of the asymptotes of the curve

" fn (0) + r”_lfn_l (0)+....+ fo(06)=0



/2 .
(b) If I, = " cos 2 x Sinnx dx show that
" Jo

N
=]
|
—_
—
I

1 + (n-2) I, _; and hence deduce

I,=—— 5+5+2

2. (a) Circles are described on the double ordinates of the parabola y2 = 4ax
as diameters. Prove that the envelope is the parabola y2 = 4a (x + a).

2 2
Yni1 _An"-m

. -1 .
= N lim
(b) If Y sm(mcos x)then prove that 50y, n+0

X —-X
(c) Find ab,c such that 2& —PCOSXHCCT 5 cx50. 4+4+4
xXsimx

3. (a) Show that the arc of the upper half of the cardiode r = a(l — cos0)

2
is bisected at 9=§TE. Find also the perimeter of the curve.

(b) Show that the curve re® =a(l+0) has no point of inflexion.

2 2
. ) _tT+1 t
(c) Find the asymptotes of the parametric curve X= 21 and y=—-.

—

4. (a) Show that feet of the normals from the point (a, B, v) to the ellipsoid

x2 y2
—2+—2+
a

2

| N

=1 lie on the intersection of the ellipsoid and the cone

Sy
N

C

0wL2(b2 —02) BbQ(c2 —a2) ve? (a2 —b2)
+ + N 7

P ” . =0.
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(b) Find the equation of the right circular cylinder whose axis is

X-Y -2 ,nd radius is 2 7+5
1 _2 2 an radaius 1s .

5. (a) Prove that cosh(x + y) = coshx coshy + sinhx sinhy.

(b) Two spheres of radii r; and r, cut orthogonally. Prove that the radius

nr

of their common circle is 2 2.
rl +r2

1
(c) Find the polar equation of the normal to the conic ;=1+€COSG,€>0.

2+5+5

6. (a) Find the equation of the generator of the cone x2 + y? = z2 through
the point (3, 4, 5).

2

2 2
(b) Given that the asteroid x§+y§ _ 3 1is the envelope of the family of

2 2

+

ellips =1, show that a + b = c.

%S

QM|><

(c) State the existence and uniqueness theorem for the solution of
ordinary differential equation. 4+4+4

d
7. (a) Solve : xay—y:x\/x2+y2.

(b) If m and n are positive integers, show that

J.b(x—a)m(b—x)”dx: min!

m+n+1
(m+n+1)!( ~a)

C/21/BSC/1st Sem/MTMH-CIT



(c) Solve y = 2px + y?p3 and find the general and singular solutions.
3+4+5

8. (a) Compute the length of the curve x=2cos0,y=sin20,0<0<7n.

(b) Find the points of inflection on the curve r(62—1):a62

c) If I, =] x" tan_lde,n beine positive integer greater than 2, prove that
o ger g

1
(n+1)1rn+(n—1)1rn_2=g—Z 3+3+6
Answer any six questions. 6Xx2

. _ 1/x
9. Find the value of lim [aoxm+a1xm 1+....+am} , in being a positive
X—>0

integer and ag#0.

1
10. Let I, :Io(lnx)hdx. Show that I, =(-1)"|n, n being positive integer.

11. The curves y = X, y™® = x (m, n > 0) meet at (0, O) and (1, 1). Find the
area between these two curves.

12. Find o if x* be an integrating factor of (x—yQ)dx+2xy dy=0,

C/21/BSC/1st Sem/MTMH-CIT



13. Find the curve for which the curvature is zero at every point and which

d
passes through the point (0, 0) where Ey=3/2.

14. Solve the differential equation
4x3ydx +(x* +y*)dy = 0.

15. Generate a reduction formula for [tan"xdx, nez* and n > 1.

16. Find the equations of the straight lines in which the plane

2x +y - z = 0 cuts the cone 4x2 - y2 + 3z2 = 0.

X
17. Find the asymptote (if any) of the curve y = a log {Sec[gﬂ'

18. On the ellipse r(5-2cos0)=21, find the point with the greatest radius

vector.

C/21/BSC/1st Sem/MTMH-CIT
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Answer any four questions. 4x12
1. (a) If a;, a,, ... a, be all positive real numbers and
S =a; *ay +t ..+ a;

S—qq S—ay s—a,
Prove that (n—l j[ n-1 j( -1 j

> ajay ...a, unless a; = a, = ... = a,



(b) If o, B, v, & are the roots of the equation t* + t2 + 1 = 0 and n is a

positive integer, prove that ¢27*!4p2ntl,,2ntl, g2n+l g,

(c) Find the relation among the coefficients of the equation ax3 + 3bx?2
+ 3cx + d = 0 if its roots be in arithmetic progression. 4+5+3

2. (a) Let C[O, 1] be the set of all real continuous functions on the closed
interval [0, 1] and T be a mapping from c[0,1] to R defined by

1
T(f)=IOf(x)dx,fec[0,1]. Show that T is a linear transformation.

(b) Let v be a real vector space with a basis {&1,&2,..,&n},

Examine if {&1+6c2,6c2 +6L3,..,6Ln+6(1} is also a basis of V.

(c) Find g e R so that the set S = {(1, 2, 1), (k, 3, 1), (2, k, O0)} is linearly
dependent in 1RS. 4+5+3

3. (a) Prove that 6|nn + 1) (n + 2), neZ.

(b) Use the theory of congruence to find the remainder when the sum

15 + 25 + 3% + .. + 100° is divided by 5. 5+5+2

c) Find the values of a for which the equation ax3 — 6x2 + 9x — 4 = 0
q

may have multiple roots. S5+5+2

1 3 -3 X
2 X -4
1 1-x 2x+1 -8-3x

4. (a) Find x if the rank of the matrix be 2.

C/21/BSC/1st Sem/MTMH-C2T



(b) Find the value of A for which the system of equations
2] = Xy + Xz + X4 = 1, X1 + 2X5 — X3 t 4K, = 2, X| + TXy - 4x3 + 11Xy

= A is solvable.

5 S S 3 3 3 2
(c) If o + B+ y = 0, Prove that o +P vy =< Pty 2 +BQ+y2

S 3 2
4+4+4
5. (a) If o, B, y be the roots of the equation x3 — 2x2 + 3x - 1 = 0,
py-o® you-p* By’

find the equation whose roots are Bry—20 7+0-2B° o+p_2y

(b) Solve : (1+x"+(1-x)*"=0

If =l+—+—=+...+—, prove that > if n > 1. 4+5+3
. s 1,11 1 S 2n
( ) n 2 3 n’ p n n+1

6. (a) Show that (2n + 1)2 = 1 (mod 8) for any natural number n.

1 00
(b) Use Cayley Hamiltan theorem, to find A5 where A=|1 0 1
010
(c) Find the dimension of the subspace ST of R4 where
S={xy,z,w)e R : x+y+z+w=0}
T={xyzw) eR*: 2x+y—z+w=0} 3+4+5

C/21/BSC/1st Sem/MTMH-C2T



7. (a) If the roots of the equation x3 + px2 + qx + r = 0 are in A. P where

p,q,r are real numbers, prove that p2 >3q -

(b) Find all values of ;}7.

(c) Prove that for any two integers U and V > 0,. there exist two unique
integers m and n such that

U=mV+n, o<n<V. 4+4+4

8. (a) If g=p(mod m) and a=c(modn), prove that b=c(modd) where

d = gcd(m, n).

(b) Find the basis for the column space of the matrix

= N =
= W N
= O

(c) Determine the conditions for which the system of equations

X+2y +z=1

2x +y+3z=D>D

X+ay+3z=D>b+1

has unique solution, many solutions and no solution.

C/21/BSC/1st Sem/MTMH-C2T



10.

11.

12.

13.

14.

15.

16.

17.

18.

Answer any six questions. 6Xx2
Find the general values of the equation
(cosB + isin®) (cos26 + isin26) .... (cosnb + isinnd) = —i, where 0 is real.

If the equation x? + px? + gx + r = 0 has three equal roots then show that
8p3 + 27q° = 0.

Solve the equations x + py + p?z = p3, x + qy + ¢°z = g3, x + ry + r?z = 13,

Find the equation whose roots are cubes of the roots of the cubic
x3+ 32 +2=0.

Prove that n? + 2 is not divisible by 4 for any integer n.

Show that the set of all points on the line y = mx forms a sub space of

the vector space R2.

Find the number of divisors and their sum of 10800.

Find the greatest value of xyz where x, y and z are positive real numbers
satisfying xy + yz + zx = 27.

If A and B be two square invertible matrices, then prove that AB and BA
have the same eigen values.

1 2 3
Show that eigen values of the matrix A=[2 4 35| are all real.
3 5 6

C/21/BSC/1st Sem/MTMH-C2T
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Answer any three from the following questions :

1. (a) Evaluate the following limits : limxln(sin x) n (0,7[).

x—0

(b) Show that the four asymptotes of the curve

3x20

(x2 —)/2)(y2 —4)cz)+6x3 —5x*y=3xy° +2y° —x> +3xy—1=0 cut the curve in eight

points which lie on the circle x* +y* =1.

6

(c) Prove that the envelope of a variable circle whose centre lies on the parabola

y* = 4ax and which passes through its vertex is 2ay” + x(x2 + yz) =0

6




(d)

- (a)
(b)

©

(d)

- (@)

(b)

(©

(d)

. (a)

(b)

(©

What are the points of inflection of the function f (x) =3x" -8x’. 4

What do you mean by rectillinear asymptotes to a curve ? 4
Find the equation of the envelope of the family of curve represented by equation

x’sina+y’cosa=a’. 4

If y= (sin‘l x)2 show that (l—xz)yn+2 —(2n+1)xy,,, —n’y, =0. Also find y,(0).
6

Find the asymptotes of the curve (x+y)(x—2y)(x—y)2 +3xy(x—y)+x>+y* =0.
6

1
If I, =_[01x” tan”' xdx, ;> 2 then prove that (n+1)/, +(n—1)I,_, +;=%. 4

Determine the length of one arc of the cycloid x=a(6@-sind), y=a(1-cosf). 4

Find the reduction formula for I sin” xCos"xdx where either m or n or both are

cos’ x

negative integers. And hence find j ——dx. 6
sin” x
Find the whole length of the loop of the curve 9ay” = (x—2a)(x—5a)2. 6
Find the eccentricity and the vertex of the conic » = 3sec’ g 4
x2 yZ
Find the polar equation of the ellipse —+===1. 4
36 20

A sphere of radius k passes through the origin and meets the axes in A, B, C. Prove
that the locus of the centroid of the triangle ABC is the sphere 9( x*+ i+ ZZ) =4k>.
6




(d)

. (@)

(b)

(©

(d)

- (@)

(b)

(©

(d)

2 2

Show that the plane y+6 =0 intersects the hyperbolic paraboloid %—y? =6z In

parabola. 6

For what angle must t he axes be turned to remove the term x> from

x* —4xy+3y* =0. 4

Find the centre and the radius of the circle 3x”+3y”> +3z*> +x-5y-2=0,

x+y=2. 4

P is a variable point such that its distance from the xy-plane is always equal to one
fourth the square of its distance from the y-axis. Show that the locus of P is a cylinder.
6

Reduce the equation 7x* + y*> +2z° +16yz+8zx —8xy +2x+4y—40z—14=0to the

canonical form and find the nature of the conicoid it represents. 6
Solve : (l+y2)dx—(tan‘1y—x)dy=0, 4
Find the singular solution of xp” — (y —x) p—-y=1. 4
Solve and find the singular solutions of p* =4y (xp—-2 y)z. 6

Solve : y(xy+2x2y2)dx+x(xy—x2y2)dy=0, 6
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Unit - 1

1. Answer any three of the following questions : 3x2=6

[;ﬁyzc“"cos2 bx, find y,(a,b>0).
wd the oblique asymptotes of the curve

yzé—{log(e—— : )
2 3x

[ Turn Over |
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(2)
(’7 ])'

X

Iy = ¥ logx, then prove that y -
(d) What is reciprocal spiral? Sketch it.

(¢) The parabolic path is given by

2
X

=xtan———5—
’ 4hcos” 0

what will be the asymptote of parabolic paths ?

2. Answer any one questions 1x10=10
il . 2 2
\(#) (1) Find the evolute of the ellipse xz +%2— =1,
a
5

Qi)/g[ P =D" (x" log x) :

Prove that P = nP, | +|n—1. Hence show

thatP,,=n!(logx+l+l+...+—1—) 5
2 nl

1/31-2800



e e

(4

‘)1) () Prave that the enve lu‘n OF Cire fey whose

contres heon the rectangular byperho

J
Ky o and o which Jriant lhum;/h s ety

l.‘,(.’i ,;/) ’(“/‘,/ i

G0 Find the pomt of imflexion on the curye

() r o aty 5
Unit - 1
b Answer any Iwo questions 272+4

/L n/d "o/
(?//” /, J’ con” “xmnxde,n 2. Prove that

)

20n- 1)1, 14 (n 2)1

nl’

(1 Find the length of the curve

v wsinOand y o " cosl)
between O (0o ) 7;

m'ind the reduction formula for

Iur."' xoin( nx )l

[ Turn Over ]
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(4)
4. Answer any fwo questions : 2x5=10

(@) Prove that the volume of the solid obtained by

revolving the lemniscate r* = a’ cos20 about the

TR | 1 1
mtial line is —ng®!{ —1 _1
5 a {\/5 og(\/—i+1) 3}.

‘ 1 n
@I, = x"(1-x) dx,
- where m and n are positive integers, then prove
that (m+n+1)I,,=nl,,, and deduce that

m'n!
mn (m+n+1)‘.‘

I
(9/ Evaluate the surface area of the solid generated
by revolving the cycloid
x=a(0-sinb),y= a(1-cos0) about the line
y = 0.
Unit - 11T

5 Answer any three questions : 3x2=6

(a'ﬁi‘nd the centre and foci of the conic

-2yt -2x+8y-1=0

1/31-2800



6.

1/31-2800

¥

(5)
(by Find the equation of the sphere of which the

circle xy+yz+zx=0,x+y+z=31s a great

circle.

(c) Find the condition that the line

= AcosO+ Bsinf may touch the conic

N |-

=1-ecos®.

(d)/ﬁ)r what angle must the axes be turned to
remove the term xy from 7x* +4xy +3y°.

N |-

\«f Find the equation of cone whose vertex is origin

and the base curve is x> +y’ =4,z=2.

Answer any one question : 1x5=5

(a) If r be the radius of the circle
X’ +y + 22+ 2ux+2vy+2wz+d =0,

Ix +my +nz =0 then prove that
(1'24—61)(124»1722+nz)=(mw-—nv)24:-(}111—-111‘)2

+( lv—-mu)2 and find the centre.

[ Turn Over ]



_ -"'-vmm”

(6)

) Show that the feet of the normals from the point

x’ }’7 z? .
(o, B, y) to the ellipsoid Zj+“,;2“+zf =1 lie

on the intersection of the ellipsoid and cone

aaz(bz—c'2)+[3b2(c2—a2)+’YCZ(a2 _bz)

=0
% y Z
7. Answer any one question : 10x1=10
(@) () Show that the plane 3x ~ 2y —z =0
cuts the cones 21x*> —4y*-5z* =0 and
3yz—2zx+2xy=0
in the same pair of perpendicular lines. 5

Qii’)/Find the equation of the cylinder, whose
generators are parallel to the straight line

-’zﬁz %:— =§ and which passes through the conic
2=0,3x> +7y% =12. 5

(b) (i) Find the locus of the point of intersection of the
perpendicular generators of the hyperboloid

4
et

P 2
%
R
a’ b

=1 4

(3] 19

Co

1/31-2800



(7)
(ii) Reduce the equation

xz+3y2+3zz—2xy—2yz—22x+1=0

to its canonical form and determine the type of
quadratic represented by it. 6

Unit - IV

8. Answer any fwo questions : 2x2=4

(a) Find the integrating factor of the differential

equation
(2xy +3x°y+ 6y3)dx +(x2 + 6y2)dy'= 0
(b) Show that the general solution of the equation

Z);+Py Q can be written in the form

y=k(u-v)+v, where k is a constant and u

and v are its two particular solutions.

(c)-Solve : éy—+ ycosx=xy".

r Turn Over |
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(8)
9. Answer any one question : 1x5=5
(@) The population of a country increases at the rate
of proportional to the number of inhabitants. If

the population doubles in 30 years, in how many
years will it triple?

(b éolve: (pxz-kyz)(px+y)=(p+1)2

[u =Xy, v=x+ _v]




