




















Total Pages—5 C/21/BSC/1st Sem/MTMH–C1T

!î”Äy¢y†îû !îÙ»!î”Äyœëû

VIDYASAGAR UNIVERSITY
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Full Marks : 60

Time : 3 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their

own words as far as practicable.

Answer any four questions. 4�12

1. (a) Find the equation of the asymptotes of the curve

� � � � � �n n
n nr f r f f1

1 0.... 0�
�� � � � � � �
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(b) If 
n

nI x Sinnx dx
/2

2

0
cos

� �� �  show that

2(n – 1) In = 1 + (n – 2) In – 1 and hence deduce

nI
n

1

1
�

�
5+5+2

2. (a) Circles are described on the double ordinates of the parabola y2 = 4ax

as diameters. Prove that the envelope is the parabola y2 = 4a (x + a).

(b) If � �y x1sin mcos�� then prove that 
n

x n

y n m

y n

2 2
1

0

4
lim

4 2
�

	

�
�

�
.

(c) Find a,b,c such that 
x xae b x ce

as x
x x

cos
2 0

sin

�� �
	 	 . 4+4+4

3. (a) Show that the arc of the upper half of the cardiode r = a(1 – cos�)

is bisected at 
2

3
� � � . Find also the perimeter of the curve.

(b) Show that the curve re a(1 )� � � �  has no point of inflexion.

(c) Find the asymptotes of the parametric curve 
t

x
t

2

2

1

1

�
�

�
 and 

t
y

t

2

1
�

�
.

4. (a) Show that feet of the normals from the point (
, �, �) to the ellipsoid

x y z

a b c

2 2 2

2 2 2
1� � �  lie on the intersection of the ellipsoid and the cone

a b c b c a

x y

2 2 2 2 2 2( ) ( )
 � � �
�  + 

� �c a b

z

2 2 2

0
� �

� .
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(b) Find the equation of the right circular cylinder whose axis is

x y z

1 2 2
� �
�

 and radius is 2. 7+5

5. (a) Prove that cosh(x + y) = coshx coshy + sinhx sinhy.

(b) Two spheres of radii r1 and r2 cut orthogonally. Prove that the radius

of their common circle is 

r r

r r

1 2

2 2
1 2� .

(c) Find the polar equation of the normal to the conic e e
r

1
1 cos , 0� � � 
 .

2+5+5

6. (a) Find the equation of the generator of the cone x2 + y2 = z2 through

the point (3, 4, 5).

(b) Given that the asteroid x y c

2 2 2

3 3 3� �  is the envelope of the family of

ellips 
x y

a b

2 2

2 2
1� � , show that a + b = c.

(c) State the existence and uniqueness theorem for the solution of

ordinary differential equation. 4+4+4

7. (a) Solve : 
dy

x y x x y
dx

2 2� � � .

(b) If m and n are positive integers, show that

b
m n m n

a

m n
x a x dx b a

m n

1! !
( ) (b ) ( )

( 1)!

� �� � � �
� ��
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(c) Solve y = 2px + y2p3 and find the general and singular solutions.

3+4+5

8. (a) Compute the length of the curve x y2cos , sin2 ,0� � � � � � � � .

(b) Find the points of inflection on the curve � �r a2 21� � � �

(c) If 
n

nI x xdx n
1

1

0
tan ,�� �  beine positive integer greater than 2, prove that

� � � �n nn I n I
n

2
1

1 1
2

�
�

� � � � � 3+3+6

Answer any six questions. 6�2

9. Find the value of 
x

m m
m

x
a x a x a

1/
1

0 1lim ....�

	�
� �� � �
� � , in being a positive

integer and a0 0� .

10. Let � �hnI lnx dx
1

0
� � . Show that � �nnI n1� � , n being positive integer.

11. The curves y = xn, ym = x (m, n > 0) meet at (0, 0) and (1, 1). Find the

area between these two curves.

12. Find 
  if x
  be an integrating factor of � �x y dx xy dy2 2 0� � � .
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13. Find the curve for which the curvature is zero at every point and which

passes through the point (0, 0) where
dy

dx
3/2� .

14. Solve the differential equation :

x ydx x y dy3 4 44 ( ) 0� � � .

15. Generate a reduction formula for n x dxtan� , n Z ��  and n > 1.

16. Find the equations of the straight lines in which the plane

2x + y – z = 0 cuts the cone 4x2 – y2 + 3z2 = 0.

17. Find the asymptote (if any) of the curve y = a log 
x

a
sec
� �� �

� �� �
� �� �

.

18. On the ellipse r (5 2cos ) 21� � � , find the point with the greatest radius

vector.
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Answer any four questions. 4�12

1. (a) If a1, a2, ... an be all positive real numbers and

S = a1 + a2 + ... + an;

Prove that 
ns a s as a

n n n

21 ...
1 1 1

� �� � � � �� �
� � � � � �� � �� � � �� �

> a1a2 ...an unless a1 = a2 = ... = an
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(b) If �	
 �	
 �	
 

 are the roots of the equation t4 + t2 + 1 = 0 and n is a

positive integer, prove that n n n n2 1 2 1 2 1 2 1 0� � � �� � � � � � 
 � .

(c) Find the relation among the coefficients of the equation ax3 + 3bx2

+ 3cx + d = 0 if its roots be in arithmetic progression. 4+5+3

2. (a) Let C[0, 1] be the set of all real continuous functions on the closed

interval [0, 1] and T be a mapping from c[0,1] to R defined by

T f f x dx f c
1

0
( ) ( ) , [0,1]� �� . Show that T is a linear transformation.

(b) Let v be a real vector space with a basis � �n1 2, ,..,� � �
� � �

,

Examine if � �n1 2 2 3 1, ,..,� � � � � � � � �
� � � � � �

 is also a basis of V.

(c) Find K R�  so that the set S = {(1, 2, 1), (k, 3, 1), (2, k, 0)} is linearly

dependent in 1R3. 4+5+3

3. (a) Prove that 6|n(n + 1) (n + 2), n �� .

(b) Use the theory of congruence to find the remainder when the sum

15 + 25 + 35 + ... + 1005 is divided by 5. 5+5+2

(c) Find the values of a for which the equation ax3 – 6x2 + 9x – 4 = 0

may have multiple roots. 5+5+2

4. (a) Find x if the rank of the matrix 

x

x

x x x

1 3 3

2 2 4

1 1 2 1 8 3

�� �
� ��� �
� �� � � �� �

 be 2.
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(b) Find the value of � for which the system of equations

2x1 – x2 + x3 + x4 = 1, x1 + 2x2 – x3 + 4x4 = 2, x1 + 7x2 – 4x3 + 11x4

= � is solvable.

(c) If �
 + �
 + �
 = 0, Prove that 
5 5 5 3 3 3 2 2 2

.
5 3 2

� � � � � � � � � � � � � � �
�

4+4+4

5. (a) If �	
 �	
 �
 be the roots of the equation x3 – 2x2 + 3x – 1 = 0,

find the equation whose roots are 

2 2

,
2 2

�� � � �� � �
� � � � � � � � � �

, 

2

2

�� � �
� � � � �

(b) Solve : n nx x2 2(1 ) (1 ) 0� � � �

(c) If nS
n

1 1 1
1 ...

2 3
� � � � � , prove that n

n
S

n

2

1
�

�
 if n > 1. 4+5+3

6. (a) Show that (2n + 1)2 �  1 (mod 8) for any natural number n.

(b) Use Cayley Hamiltan theorem, to find A50 where A

1 0 0

1 0 1

0 1 0

� �
� �� � �
� �
� �

.

(c) Find the dimension of the subspace S T�  of 4
�  where

S x y z w x y z w4{( , , , ) : 0}.� � � � � ��

T x y z w x y z w4{( , , , ) : 2 0}.� � � � � �� 3+4+5
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7. (a) If the roots of the equation x3 + px2 + qx + r = 0 are in A. P where

p,q,r are real numbers, prove that p q2 3� .

(b) Find all values of i
1
7 .

(c) Prove that for any two integers U and V > 0,. there exist two unique

integers m and n such that

U mV n o n V,� � � � . 4+4+4

8. (a) If a b� (mod m) and a c n(mod )� , prove that b c(mod d)�  where

d = gcd(m, n).

(b) Find the basis for the column space of the matrix

1 2 1

2 3 0

1 1 1

�� �
� �
� �
� �
� �

(c) Determine the conditions for which the system of equations

x + 2y + z = 1

2x + y + 3z = b

x + ay + 3z = b + 1

has unique solution, many solutions and no solution.
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Answer any six questions. 6�2

9. Find the general values of the equation

(cos � + i sin �) (cos 2� + i sin 2�) .... (cos n� + i sin n�) = –i, where � is real.

10. If the equation x4 + px2 + qx + r = 0 has three equal roots then show that

8p3 + 27q2 = 0.

11. Solve the equations x + py + p2z = p3, x + qy + q2z = q3, x + ry + r2z = r3.

12. Find the equation whose roots are cubes of the roots of the cubic

x3 + 3x2 + 2 = 0.

13. Prove that n2 + 2 is not divisible by 4 for any integer n.

14. Show that the set of all points on the line y = mx forms a sub space of

the vector space 2
� .

15. Find the number of divisors and their sum of 10800.

16. Find the greatest value of xyz where x, y and z are positive real numbers

satisfying xy + yz + zx = 27.

17. If A and B be two square invertible matrices, then prove that AB and BA

have the same eigen values.

18. Show that eigen values of the matrix A

1 2 3

2 4 5

3 5 6

� �
� �� � �
� �
� �

 are all real.
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Question Paper

VIDYASAGAR UNIVERSITY

Answer any three from the following questions : 3×20

1. (a) Evaluate the following limits :  
0

lim sin
x

xln x


 in  0, . 4

(b) Show that the four asymptotes of the curve

  2 2 2 2 3 2 3 3 24 6 5 3 2 3 1 0x y y x x x y xy y x xy           cut the curve in eight

points which lie on the circle 2 2 1x y  . 6

(c) Prove that the envelope of a variable circle whose centre lies on the parabola

2 4y ax  and which passes through its vertex is  2 2 22 0ay x x y   6

Full Marks : 60

Time : 3 Hours



(d) What are the points of inflection of the function   4 33 8f x x x  . 4

2. (a) What do you mean by rectillinear asymptotes to a curve ? 4

(b) Find the equation of the envelope of the family of curve represented by equation
2 2 2sin cosx y a   . 4

(c) If  21siny x  show that    2 2
2 11 2 1 0n n nx y n xy n y      . Also find  0ny .

6

(d) Find the asymptotes of the curve      2 2 22 3 0x y x y x y xy x y x y        .

6

3. (a) If 
1 1

0
tann

nI x xdx  , 2n   then prove that     2

1
1 1

2n nn I n I
n


     . 4

(b) Determine the length of one arc of the cycloid    sin , 1 cosx a y a      . 4

(c) Find the reduction formula for sinm nxCos xdx  where either m or n or both are

negative integers. And hence find 
4

2

cos

sin

x
dx

x . 6

(d) Find the whole length of the loop of the curve   229 2 5ay x a x a   . 6

4. (a) Find the eccentricity and the vertex of the conic 23sec
2

r


 . 4

(b) Find the polar equation of the ellipse 
2 2

1
36 20

x y
  . 4

(c) A sphere of radius k passes through the origin and meets the axes in A, B, C. Prove

that the locus of the centroid of the triangle ABC is the sphere  2 2 2 29 4x y z k   .

6



(d) Show that the plane 6 0y    intersects the hyperbolic paraboloid 
2 2

6
5 4

x y
z   in

parabola. 6

5. (a) For what angle must t he axes be turned to remove the term 2x   from
2 24 3 0x xy y   . 4

(b) Find the centre and the radius of the circle 2 2 23 3 3 5 2 0x y z x y      ,

2x y  . 4

(c) P is a variable point such that its distance from the xy-plane is always equal  to one
fourth the square of its distance from the y-axis. Show that the locus of P is a cylinder.

6

(d) Reduce the equation 2 2 27 16 8 8 2 4 40 14 0x y z yz zx xy x y z          to the

canonical form and find the nature of the conicoid it represents. 6

6. (a) Solve :    2 11 tan 0y dx y x dy    . 4

(b) Find the singular solution of  2 1xp y x p y    . 4

(c) Solve and find the singular solutions of  24 4 2p y xp y  . 6

(d) Solve :    2 2 2 22 0y xy x y dx x xy x y dy    . 6

_____________
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Unit I 

1. Answer any three of the following questions: 32-6 

(If y=c" cos bx, find y, (a,b> 0). 

(b Find the oblique asymptotes of the curve 

3 1os 
y2 

( Turn Over ] 

1/31-2800 



(2) 

f y = r logr, then prove that y. =7-1) 
X 

(d) What is reciprocal spiral? Sketch it. 

(e) The parabolic path is given by 

2 

y=x tan0-- 
4h cos 0 

what will be the asymptote of parabolic paths ? 

2. Answer any one questions 1x10=10 

ay ) Find the evolute of the ellipse 

et P, = D"(x" logx 

Prove that P, = nP,+|n-1. Hence show 

that P= nlog x+1+t.+ 

1/31-2800 



) i)l'ove that the envelope of ciles wlose 
Centes ie on the ectungular hyperheola 
y - nd whih pass through its centre 

in (y'- 16'y 

() Find the point of inflex ion on the curve 

( 

Unit I 

3 Anmwer any (wo questions 2/2-4 

con xNin x dx, n>2. Prove that 

2(n-1)/,1 +(n -2)/, 
Find the length of the curve 

x sin (0 and y=e" cos0 

betwecn 9 0 to 0 2 

Find the reduction formula for 

co" xsin(mx )ds 

Turn (ver/ 
/1 200 



(4) 
4. Answer any wo questions 2x5 10 

(a) Prove that the volume of the solid obtained by 

revolving the lemniscate r = a cos 20 about the 

initial line is nao(+)- 2 

n 

(b) If =(1-x) d, 

where m and n are positive integers, then prove 

that (m +n+1)/mu = nlmu- and deduce that 

m!n! 

mm+n+1)! 
(cEvaluate the surface area of the solid generated 

by revolving the cycloid 

x=a(0-sin 6), y = a(1-cos8) about the line 

y = 0. 

Unit III 

3x2-6 
5. Answer any three questions 

(a Find the centre and foci of the conic

-2y-2x+8y-1 =0 

1/31-2800 



(5) 

by Find the equation of the sphere of which the 

circle xy + yz + Zx = 0, x+y+z = 3 is a great 

circle. 

(c) Find the condition that the line 

= A cos0+Bsin 0 may touch the conic 

=1-ecos6. 

(dFor what angle must the axes be turned to 

remove the term xy from 7x*+4xy+3y' 

Ves Find the equation of cone whose vertex is origin 

and the base curve is x+y = 4, z =2. 

6. Answer any one question 1x5-5 

(a) Ifr be the radius of the circle 

+y+2? +2ux +21y +2wz+d =0. 
Ix +my +nz = 0 then prove that 

(+d)P +m +ni)= (mw -v) +(mu-w) 
2 

+(lv-mu) and find the centre. 

[Turn Over ] 
/31-2800 



(6) 
N) Show that the feet of the normals from the point 

(a, B. 7) to the ellipsoid =1 lie 

on the intersection of the ellipsoid and cone 

aa (b-c) Bb(e-a), ye(-b)_ 
z y 

10x1=10 7. Answer any one question: 

(a) Show that the plane 3x - 2y -z = 0 (a) 

cuts the cones 21x-4y-5z? = 0 and 

3 yz -2zx+2xy = 0 

5 in the same pair of perpendicular lines. 

Find the equation of the cylinder, whose 
generators are parallel to the straight line 

and which passes through the conic 

z = 0,3x +7y =12. 5 

(b) ) Find the locus of the point of intersection of the 

perpendicular generators of the hyperboloid 
(b) 

4 

1/31-2800 



(7) 

(i) Reduce the equation 

+3y +3z-2xy-2)yz -2zx+l =0 

to its canonical form and determine the type of 

6 
quadratic represented by it. 

Unit IV 

2x2-4 
8. Answer any two questionsS 

(a) Find the integrating factor of the differential 

equation 

2xy+3xy+6° )d +(x +6y* )dy = 0 

b) Show that the general solution of the equation 

+Py=Q can be written in the form 

y=k{u-v)+V, where k is a constant and u 

and v are its two particular solutions. 

CSolve :+ycosr = xy". 

Turn Over ] 



(8) 
9. Answer any one question : 1x5=5 

(a) The population of a country increases at the rate 

of proportional to the number of inhabitants. If 
the population doubles in 30 years, in how many 
years will it triple? 

ySolve: (pr'+° )\pr*+y)=(p+1)} 
u=xy, v=x+y 


