B.Sc./1st Sem (H)/MATH/22 (CBCS)

2022

1st Semester Examination MATHEMATICS (Honours)

Paper: C 1-T

[Calculus, Geometry and Differential Equation]

[CBCS]

Full Marks: 60

Time: Three Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Group - A

1. Answer any ten questions:

2×10=20

(i) Find y_n for the function $y = \frac{x^n}{x-1}$.

Show that the curve $y^3 = 8x^2$ is concave to the foot of the ordinate everywhere except at the origin.

(di) If the axes are rotated through an angle 45° without changing the origin, then find the new form of the equation $x^2 - y^2 = a^2$.

- Find the equation of the circle lying on the sphere $x^2 + y^2 + z^2 2y 4z = 11$ and having its centre at (1,3,4). $x^2 + y^2 + z^2 2y 4z = 1$ and having its centre
 - (v) Find the total area of the circle $x^2 + y^2 + 2x = 9$.
- If $I_n = \int_0^{\pi/4} \tan^n x dx$, for $n \ge 2$, find the value of $I_n + I_{n-2}$.
 - (vii) Find the asymptotes of the curve $x^3 + y^3 = 3axy$.
- (viii) Find the integrating factor of $(1+x^2)y_1 + y = e^{\tan^{-1}x}.$
 - Find the singular solution of $y = x \frac{dy}{dx} \left(\frac{dy}{dx}\right)^2$.
 - Find the nature of the conic $3x^2 + 2xy + 3y^2 16x + 20 = 0$
 - (xi) Calculate the sum of the reciprocals of two perpendicular focal chord of the conic $1/r = 1 + e \cos \theta$.
- (xii) Show that $\lim_{x\to\infty} \left(\frac{ax+1}{ax-1}\right)^x = e^{2/a}, \ a>0.$

(xiii) If $u = \sin ax + \cos ax$, show that $u_n = a^n \left\{ 1 + \left(-1\right)^n \sin 2ax \right\}^{\frac{1}{2}}.$

(xiv) Solve $p - \frac{1}{p} - \frac{x}{y} + \frac{y}{x} = 0$ where $p \equiv \frac{dy}{dx}$.

(xv) Evaluate $\lim_{x\to\infty} \left(\sqrt{x^2+2x}-x\right)$.

Group - B

2. Answer any four questions:

- 5×4=20
- (i) State and prove Leibnitz's theorem. If $y = \tan^{-1}x$ find $(y_n)_0$ by using Leibnitz's theorem.
- (ii) Prove that the locus of the middle points of focal chords of a conic is an another conic.
- (iii) If $J_n = \int \sin n\theta \sec \theta d\theta$, show that $J_n + J_{n-2} = -\frac{2}{n-1} \cos (n-1)\theta$. Hence deduce the value $\int_0^{\pi/2} \frac{\sin 3\theta \cos 3\theta}{\cos \theta} d\theta$.
 - (Iv) If S be the length of the arc of $3ay^2 = x(x-a)^2$, measured from the origin to the point (x, y), show that $3s^2 = 4x^2 + 3y^2$.

P.T.O.

(v) Find the equation to the right circular cylinder of radius a, whose axis passes through the origins and makes equal angles with the co-ordinates axes.

(vi) Solve: $16x^2 + 2\left(\frac{dy}{dx}\right)^2 y - \left(\frac{dy}{dx}\right)^3 x = 0$.

Group - C

3. Answer any two questions:

 $10 \times 2 = 20$

(i) (a) Explain L'Hospital Rule. Using L'Hospital Rule prove that

$$\lim_{x \to \infty} \left[\frac{a_1^{1/x} + a_2^{1/x} + \dots + a_n^{1/x}}{n} \right]^{nx} = a_1 a_2 \dots a_n.$$

- (b) Find the envelop of the straight line $\frac{x}{a} + \frac{y}{b} = 1$, a and b are variable parameters connected by the relation a+b=c. 5+5
- (ii) (a) What is a great circle? Obtain the equation of the sphere having the circle $x^2 + y^2 + z^2 + 10y 4z 8 = 0$, x + y + z = 3 as the great circle.
 - (b) Reduce the equation $3x^2 + 5y^2 + 3z^2 + 2yz + 2zx + 2xy 4x 8z + 5 = 0$, to the standard form and find the nature of the conic. 3+7

- (iii) (a) Find the volume of ellipsoid generated by the revolution of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ about major axis and minor axis.
 - (b) Define singular and general solution of the differential equation. Find the both solutions of the following differential equation: $p^{3}x - p^{2}y - 1 = 0.$ 5+5
- (iv) (a) Find the rectilinear asymptotes of the following curve:

$$x^3 + x^2y - xy^2 - y^3 + 2xy + 2y^2 - 3x + y = 0.$$

(b) If $f(m,n) = \int_0^{\pi/2} \cos^m x \sin nx \, dx$ prove that

$$f(m,n) = \frac{1}{m+n} + \frac{m}{m+n} f(m-1, n-1),$$

m, n > 0. Hence deduce that

$$f(m,n) = \frac{1}{2^{m+1}} \left(\frac{2}{1} + \frac{2^2}{2} + \frac{2^3}{3} + \dots + \frac{2^m}{m} \right).$$

Total Pages: 5

2022

1st Semester Examination MATHEMATICS (Honours)

Paper: C 2-T

[Algebra]

[CBCS]

Full Marks: 60

Time: Three Hours

The figures in the margin indicate full marks.

Candidates are required to give their answers

in their own words as far as practicable.

Group - A

1. Answer any ten questions:

2×10=20

- (a) If a, b, c be three positive real numbers in Harmonic Progression and n be a positive integer greater than 1, then prove that $a^n + c^n = 2b^n$.
- (b) Geometrically represent the complex number z = a + b i.
- (c) Find the conditions that the roots of the equation $x^4 + px^3 + qx^2 + rx + s = 0$ are in G.P.

THE REPORT OF THE SAME TO SEE

- (a) Apply Descartes' rule of signs to determine the nature of the roots of the equation $x^4 + x^2 + x 1 = 0$.
- (a) Diminish the roots of $4x^3 8x^2 19x + 38 = 0$ by 2.
 - (f) If $a,b \in \mathbb{Z}$, not both zero, such that gcd(a,b) = a u + b v, prove that gcd(u, v) = 1, where $u, v \in \mathbb{Z}$.
 - (g) Can a null vector be an element of a basis set?

 Support your answer.
 - (h) Find the last two digits in 7100.
 - (i) If a row echelon matrix R has r non-zero rows, then prove that rank of R = r.
 - If λ be an eigen value of an $n \times n$ matrix A, prove that λ^m is an eigen value of the matrix A^m , where $m \in \mathbb{Z}^+$.
 - Show that the subspace U + W is the smallest subspace of vector space V containing the subspaces U and W.
 - For what real values of k is the set $S = \{(k, 1, 1, 1), (1, k, 1, 1), (1, 1, k, 1), (1, 1, 1, k)\}$ linearly independent in vector space \mathbb{R}^4 ?

- (m) Let V and W be vector spaces over a field F, and $T:V\to W$ be a linear mapping. Prove that T is injective if and only if $Ker\ T=\{\theta\}$.
- Use Euclidean algorithm to find integers u and v satisfying 52u 91v = 78.
- (a) Use Division algorithm to show that the cube of any integer is of the form 9k or $9k \pm 1$, $k \in \mathbb{Z}$.

Group - B

2. Answer any four questions:

5×4=20

- (a) Prove that $\arg z \arg(-z) = \pm \pi$ according as $\arg z > 0$ or $\arg z < 0$.
- (b) If a, b, c be positive real numbers and $abc = k^3$, prove that $(1+a)(1+b)(1+c) \ge (1+k)^3$.
- (c) Show that the equation $(x-a)^3 + (x-b)^3 + (x-c)^3 + (x-d)^3 = 0$, where a, b, c, d are not all equal, has only one real root.
- If α , β , γ be the roots of the equation $x^3 + px^2 + qx + r = 0$, then form the equation whose roots are $\alpha + \frac{1}{\alpha}$, $\beta + \frac{1}{\beta}$, $\gamma + \frac{1}{\gamma}$.

- (e) Find a basis and dimension of the subspace S of \mathbb{R}^3 defined by $S = \{(x, y, z) \in \mathbb{R}^3 : 2x + y z = 0\}.$
- (f) Use the principle of induction to prove that 2.7'' + 3.5'' 5 is divisible by 24, $\forall n \in \mathbb{N}$.

Group - C

Answer any two questions:

 $10 \times 2 = 20$

- 3. (a) If $\alpha = \cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n}$ and gcd(n, p) = 1, then prove that $1 + \alpha^p + \alpha^{2p} + ... + a^{(n-1)p} = 0$.
 - (b) Prove that in the euqation f(x) = 0 with real coefficients, imaginary roots occur in conjugate pairs.

 5+5
- 4. (a) Solve the equation $x^3 3x^2 + 12x + 16 = 0$ by Cardan's method.
 - (b) State Cayley-Hamilton theorem. Using the theorem describe a method of computing A^{-1} when A is a non-singular square matrix. 6+(1+3)

TO BUILDING SHOW

5. (a) If
$$\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$, are the eigen vectors

corresponding the eigen values 1, 2, 0 of the real square matrix A of order 3, then find A.

(b) Find a linear mapping $T: \mathbb{R}^3 \to \mathbb{R}^3$ such that Im T is the subspace

$$U = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\}$$
 5+5

- 6. (a) For what value of k the planes x-4y+5z=k, x-y+2z=3, and 2x+y+z=0 intersect in a line? Find the equations of the line in that case.
 - (b) If $z = \cos \theta + i \sin \theta$ and $m \in \mathbb{Z}^+$, then show that $\frac{z^{2m} 1}{z^{2m} + 1} = i \tan m\theta. \tag{4+2}+4$

বিদ্যাসাগর বিশ্ববিদ্যালয়

VIDYASAGAR UNIVERSITY

B.Sc. Honours Examination 2021

(CBCS)

1st Semester

MATHEMATICS

PAPER—C1T

CALCULUS, GEOMETRY AND DIFFERENTIAL EQUATION

Full Marks: 60

Time: 3 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer any four questions.

 4×12

1. (a) Find the equation of the asymptotes of the curve

$$r^{n} f_{n}(\theta) + r^{n-1} f_{n-1}(\theta) + \dots + f_{0}(\theta) = 0$$

(b) If
$$I_n = \int_0^{\pi/2} \cos^{n-2} x \, Sinnx \, dx$$
 show that

2(n-1) $I_n = 1 + (n-2)$ I_{n-1} and hence deduce

$$I_n = \frac{1}{n-1}$$
 5+5+2

- **2.** (a) Circles are described on the double ordinates of the parabola $y^2 = 4ax$ as diameters. Prove that the envelope is the parabola $y^2 = 4a$ (x + a).
 - (b) If $y = \sin(m\cos^{-1}\sqrt{x})$ then prove that $\lim_{x\to 0} \frac{y_{n+1}}{y_n} = \frac{4n^2 m^2}{4n + 2}$.

(c) Find a,b,c such that
$$\frac{ae^x - b\cos x + ce^{-x}}{x\sin x} \to 2 \text{ as } x \to 0.$$

- 3. (a) Show that the arc of the upper half of the cardiode $r = a(1 \cos\theta)$ is bisected at $\theta = \frac{2}{3}\pi$. Find also the perimeter of the curve.
 - (b) Show that the curve $re^{\theta} = a(1+\theta)$ has no point of inflexion.
 - (c) Find the asymptotes of the parametric curve $x = \frac{t^2 + 1}{t^2 1}$ and $y = \frac{t^2}{t 1}$.
- **4.** (a) Show that feet of the normals from the point (α, β, ν) to the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ lie on the intersection of the ellipsoid and the cone

$$\frac{\alpha a^2 (b^2 - c^2)}{x} + \frac{\beta b^2 (c^2 - a^2)}{y} + \frac{vc^2 (a^2 - b^2)}{z} = 0.$$

- (b) Find the equation of the right circular cylinder whose axis is $\frac{x}{1} = \frac{y}{-2} = \frac{z}{2}$ and radius is 2.
- **5.** (a) Prove that cosh(x + y) = coshx coshy + sinhx sinhy.
 - (b) Two spheres of radii r_1 and r_2 cut orthogonally. Prove that the radius of their common circle is $\frac{r_1r_2}{\sqrt{{r_1}^2+{r_2}^2}}$.
 - (c) Find the polar equation of the normal to the conic $\frac{1}{r} = 1 + e \cos \theta, e > 0$. 2 + 5 + 5
- **6.** (a) Find the equation of the generator of the cone $x^2 + y^2 = z^2$ through the point (3, 4, 5).
 - (b) Given that the asteroid $x^{\frac{2}{3}} + y^{\frac{2}{3}} = c^{\frac{2}{3}}$ is the envelope of the family of ellips $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, show that a + b = c.
 - (c) State the existence and uniqueness theorem for the solution of ordinary differential equation. 4+4+4
- **7.** (a) Solve : $x \frac{dy}{dx} y = x\sqrt{x^2 + y^2}$.
 - (b) If m and n are positive integers, show that

$$\int_{a}^{b} (x-a)^{m} (b-x)^{n} dx = \frac{m! n!}{(m+n+1)!} (b-a)^{m+n+1}$$

- (c) Solve $y = 2px + y^2p^3$ and find the general and singular solutions. 3+4+5
- 8. (a) Compute the length of the curve $x = 2\cos\theta, y = \sin 2\theta, 0 \le \theta \le \pi$.
 - (b) Find the points of inflection on the curve $r(\theta^2 1) = a\theta^2$
 - (c) If $I_n = \int_0^1 x^n \tan^{-1} x dx$, n beine positive integer greater than 2, prove that

$$(n+1)I_n + (n-1)I_{n-2} = \frac{\pi}{2} - \frac{1}{n}$$
3+3+6

Answer any six questions.

 6×2

- **9.** Find the value of $\lim_{x\to\infty} \left[a_0 x^m + a_1 x^{m-1} + \dots + a_m \right]^{1/x}$, in being a positive integer and $a_0 \neq 0$.
- **10.** Let $I_n = \int_0^1 (\ln x)^h dx$. Show that $I_n = (-1)^n |\underline{n}|$, n being positive integer.
- **11.** The curves $y = x^n$, $y^m = x$ (m, n > 0) meet at (0, 0) and (1, 1). Find the area between these two curves.
- **12.** Find α if x^{α} be an integrating factor of $(x-y^2)dx + 2xy dy = 0$.

- **13.** Find the curve for which the curvature is zero at every point and which passes through the point (0, 0) where $\frac{dy}{dx} = 3/2$.
- 14. Solve the differential equation:

$$4x^3ydx + (x^4 + y^4)dy = 0.$$

- **15.** Generate a reduction formula for $\int \tan^n x \, dx$, $n \in \mathbb{Z}^+$ and n > 1.
- **16.** Find the equations of the straight lines in which the plane 2x + y z = 0 cuts the cone $4x^2 y^2 + 3z^2 = 0$.
- **17.** Find the asymptote (if any) of the curve $y = a \log \left[\sec \left(\frac{x}{a} \right) \right]$.
- 18. On the ellipse $r(5-2\cos\theta)=21$, find the point with the greatest radius vector.

বিদ্যাসাগর বিশ্ববিদ্যালয়

VIDYASAGAR UNIVERSITY

B.Sc. Honours Examination 2021

(CBCS)

1st Semester

MATHEMATICS

PAPER—C2T

ALGEBRA

Full Marks: 60

Time: 3 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer any four questions.

 4×12

1. (a) If a_1 , a_2 , ... a_n be all positive real numbers and

$$S = a_1 + a_2 + \dots + a_n;$$

Prove that
$$\left(\frac{s-a_1}{n-1}\right)\left(\frac{s-a_2}{n-1}\right)...\left(\frac{s-a_n}{n-1}\right)$$

$$> a_1 a_2 ... a_n$$
 unless $a_1 = a_2 = ... = a_n$

- (b) If α , β , γ , δ are the roots of the equation $t^4 + t^2 + 1 = 0$ and n is a positive integer, prove that $\alpha^{2n+1} + \beta^{2n+1} + \gamma^{2n+1} + \delta^{2n+1} = 0$.
- (c) Find the relation among the coefficients of the equation $ax^3 + 3bx^2 + 3cx + d = 0$ if its roots be in arithmetic progression. 4+5+3
- **2.** (a) Let C[0, 1] be the set of all real continuous functions on the closed interval [0, 1] and T be a mapping from c[0,1] to R defined by $T(f) = \int_0^1 f(x) dx, f \in c[0,1].$ Show that T is a linear transformation.
 - (b) Let v be a real vector space with a basis $\{\vec{\alpha}_1,\vec{\alpha}_2,..,\vec{\alpha}_n\}$,

Examine if $\{\vec{\alpha}_1 + \vec{\alpha}_2, \vec{\alpha}_2 + \vec{\alpha}_3, ..., \vec{\alpha}_n + \vec{\alpha}_1\}$ is also a basis of V.

- (c) Find $K \in \mathbb{R}$ so that the set S = {(1, 2, 1), (k, 3, 1), (2, k, 0)} is linearly dependent in $1\mathbb{R}^3$.
- **3.** (a) Prove that $6 | n(n + 1) (n + 2), n \in \mathbb{Z}$.
 - (b) Use the theory of congruence to find the remainder when the sum $1^5 + 2^5 + 3^5 + ... + 100^5$ is divided by 5. 5+5+2
 - (c) Find the values of a for which the equation $ax^3 6x^2 + 9x 4 = 0$ may have multiple roots. 5+5+2
- **4.** (a) Find x if the rank of the matrix $\begin{pmatrix} 1 & 3 & -3 & x \\ 2 & 2 & x & -4 \\ 1 & 1-x & 2x+1 & -8-3x \end{pmatrix}$ be 2.

- (b) Find the value of λ for which the system of equations $2x_1 x_2 + x_3 + x_4 = 1, \ x_1 + 2x_2 x_3 + 4x_4 = 2, \ x_1 + 7x_2 4x_3 + 11x_4 = \lambda \text{ is solvable.}$
- (c) If $\alpha + \beta + \gamma = 0$, Prove that $\frac{\alpha^5 + \beta^5 + \gamma^5}{5} = \frac{\alpha^3 + \beta^3 + \gamma^3}{3} \cdot \frac{\alpha^2 + \beta^2 + \gamma^2}{2}$
- **5.** (a) If α , β , γ be the roots of the equation $x^3 2x^2 + 3x 1 = 0$,

 $\text{find the equation whose roots are } \frac{\beta\gamma-\alpha^2}{\beta+\gamma-2\alpha}, \frac{\gamma\alpha-\beta^2}{\gamma+\alpha-2\beta}, \ \frac{\gamma\beta-\gamma^2}{\alpha+\beta-2\gamma}$

- (b) Solve : $(1+x)^{2n} + (1-x)^{2n} = 0$
- (c) If $S_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$, prove that $S_n > \frac{2n}{n+1}$ if n > 1.
- **6.** (a) Show that $(2n + 1)^2 \equiv 1 \pmod{8}$ for any natural number n.
 - (b) Use Cayley Hamiltan theorem, to find A^{50} where $A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$.
 - (c) Find the dimension of the subspace $S \cap T$ of \mathbb{R}^4 where

$$S = \{(x, y, z, w) \in \mathbb{R}^4 : x + y + z + w = 0\}.$$

$$T = \{(x, y, z, w) \in \mathbb{R}^4 : 2x + y - z + w = 0\}.$$

$$3+4+5$$

- **7.** (a) If the roots of the equation $x^3 + px^2 + qx + r = 0$ are in A. P where p,q,r are real numbers, prove that $p^2 \ge 3q$.
 - (b) Find all values of $i^{1/7}$.
 - (c) Prove that for any two integers U and V > 0, there exist two unique integers m and n such that

$$U = mV + n, \quad o \le n < V$$
.

- **8.** (a) If $a \equiv b \pmod{m}$ and $a \equiv c \pmod{n}$, prove that $b \equiv c \pmod{d}$ where $d = \gcd(m, n)$.
 - (b) Find the basis for the column space of the matrix

$$\begin{pmatrix} 1 & 2 & -1 \\ 2 & 3 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

(c) Determine the conditions for which the system of equations

$$x + 2y + z = 1$$

$$2x + y + 3z = b$$

$$x + ay + 3z = b + 1$$

has unique solution, many solutions and no solution.

Answer any six questions.

 6×2

- **9.** Find the general values of the equation $(\cos\theta + i\sin\theta) (\cos 2\theta + i\sin 2\theta) \dots (\cos n\theta + i\sin n\theta) = -i, \text{ where } \theta \text{ is real.}$
- **10.** If the equation $x^4 + px^2 + qx + r = 0$ has three equal roots then show that $8p^3 + 27q^2 = 0$.
- **11.** Solve the equations $x + py + p^2z = p^3$, $x + qy + q^2z = q^3$, $x + ry + r^2z = r^3$.
- **12.** Find the equation whose roots are cubes of the roots of the cubic $x^3 + 3x^2 + 2 = 0$.
- **13.** Prove that $n^2 + 2$ is not divisible by 4 for any integer n.
- **14.** Show that the set of all points on the line y = mx forms a sub space of the vector space \mathbb{R}^2 .
- 15. Find the number of divisors and their sum of 10800.
- **16.** Find the greatest value of xyz where x, y and z are positive real numbers satisfying xy + yz + zx = 27.
- **17.** If A and B be two square invertible matrices, then prove that AB and BA have the same eigen values.
- **18.** Show that eigen values of the matrix $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{pmatrix}$ are all real.

বিদ্যাসাগর বিশ্ববিদ্যালয় VIDYASAGAR UNIVERSITY

Question Paper

B.Sc. Honours Examinations 2020

(Under CBCS Pattern)

Semester - I

Subject: MATHEMATICS

Paper: C 1-T

Full Marks: 60

Time: 3 Hours

Candidates are required to give their answers in their own words as far as practicable.

The figures in the margin indicate full marks.

Answer any *three* from the following questions:

 3×20

4

- 1. (a) Evaluate the following limits : $\lim_{x\to 0} x \ln(\sin x)$ in $(0,\pi)$.
 - (b) Show that the four asymptotes of the curve

 $(x^2 - y^2)(y^2 - 4x^2) + 6x^3 - 5x^2y - 3xy^3 + 2y^3 - x^2 + 3xy - 1 = 0$ cut the curve in eight points which lie on the circle $x^2 + y^2 = 1$.

(c) Prove that the envelope of a variable circle whose centre lies on the parabola $y^2 = 4ax$ and which passes through its vertex is $2ay^2 + x(x^2 + y^2) = 0$

- (d) What are the points of inflection of the function $f(x) = 3x^4 8x^3$.
- 2. (a) What do you mean by rectillinear asymptotes to a curve?
 - (b) Find the equation of the envelope of the family of curve represented by equation $x^2 \sin \alpha + y^2 \cos \alpha = a^2$.
 - (c) If $y = (\sin^{-1} x)^2$ show that $(1-x^2)y_{n+2} (2n+1)xy_{n+1} n^2y_n = 0$. Also find $y_n(0)$.
 - (d) Find the asymptotes of the curve $(x+y)(x-2y)(x-y)^2 + 3xy(x-y) + x^2 + y^2 = 0$.
- 3. (a) If $I_n = \int_0^1 x^n \tan^{-1} x dx$, n > 2 then prove that $(n+1)I_n + (n-1)I_{n-2} + \frac{1}{n} = \frac{\pi}{2}$.
 - (b) Determine the length of one arc of the cycloid $x = a(\theta \sin \theta)$, $y = a(1 \cos \theta)$.
 - (c) Find the reduction formula for $\int \sin^m x Cos^n x dx$ where either m or n or both are negative integers. And hence find $\int \frac{\cos^4 x}{\sin^2 x} dx$.
 - (d) Find the whole length of the loop of the curve $9ay^2 = (x-2a)(x-5a)^2$.
- 4. (a) Find the eccentricity and the vertex of the conic $r = 3\sec^2\frac{\theta}{2}$.
 - (b) Find the polar equation of the ellipse $\frac{x^2}{36} + \frac{y^2}{20} = 1$.
 - (c) A sphere of radius k passes through the origin and meets the axes in A, B, C. Prove that the locus of the centroid of the triangle ABC is the sphere $9(x^2 + y^2 + z^2) = 4k^2$.

6

- (d) Show that the plane y+6=0 intersects the hyperbolic paraboloid $\frac{x^2}{5} \frac{y^2}{4} = 6z$ in parabola.
- 5. (a) For what angle must t he axes be turned to remove the term x^2 from $x^2 4xy + 3y^2 = 0$.
 - (b) Find the centre and the radius of the circle $3x^2 + 3y^2 + 3z^2 + x 5y 2 = 0$, x + y = 2.
 - (c) P is a variable point such that its distance from the xy-plane is always equal to one fourth the square of its distance from the y-axis. Show that the locus of P is a cylinder.
 - (d) Reduce the equation $7x^2 + y^2 + z^2 + 16yz + 8zx 8xy + 2x + 4y 40z 14 = 0$ to the canonical form and find the nature of the conicoid it represents.
- 6. (a) Solve: $(1+y^2)dx (\tan^{-1} y x)dy = 0$.
 - (b) Find the singular solution of $xp^2 (y-x)p y = 1$.
 - (c) Solve and find the singular solutions of $p^4 = 4y(xp-2y)^2$.
 - (d) Solve: $y(xy+2x^2y^2)dx + x(xy-x^2y^2)dy = 0$.

Total Page - 8

UG/1st Sem/MATH(H)/T/19

2019

B.Sc.

1st Semester Examination MATHEMATICS (Honours)

Paper - C 1-T

Full Marks: 60

Time: 3 Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable. Illustrate the answers wherever necessary.

Unit - I

1. Answer any three of the following questions: $3\times2=6$

(a) If
$$y = c^{ax} \cos^2 bx$$
, find $y_n(a, b > 0)$.

(b) Find the oblique asymptotes of the curve

$$y = \frac{3x}{2} \log \left(e - \frac{1}{3x} \right)$$

(c) If
$$y = x^{n-1} \log x$$
, then prove that $y_n = \frac{(n-1)!}{x}$

- (d) What is reciprocal spiral? Sketch it.
- (e) The parabolic path is given by

$$y = x \tan \theta - \frac{x^2}{4h \cos^2 \theta}$$

what will be the asymptote of parabolic paths?

2. Answer any one questions:

$$1 \times 10 = 10$$

(a) (i) Find the evolute of the ellipse
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
.

(ii) Let
$$P_n = D^n (x^n \log x)$$
.

Prove that $P_n = nP_{n-1} + \lfloor n-1 \rfloor$. Hence show

that
$$P_n = n! \left(\log x + 1 + \frac{1}{2} + \dots + \frac{1}{n} \right)$$
.

- (b) (i) Prove that the envelope of circles whose centres lie on the rectangular hyperbola $xy c^2$ and which pass through its centre is $(x^2 + y^2)^2 = 16c^2xy$.
 - (ii) Find the point of inflexion on the curve $(\theta^2 1)r = a\theta^2$.

Unit - II

3. Answer any two questions:

 $2 \times 2 = 4$

(a) If $I_n = \int_0^{n/2} \cos^{n-2} x \sin x \, dx$, n > 2. Prove that $2(n-1)I_n = 1 + (n-2)I_{n-1}.$

(b) Find the length of the curve

$$x = e^{\theta} \sin \theta$$
 and $y = e^{\theta} \cos \theta$

between
$$\theta = 0$$
 to $\theta = \frac{\pi}{2}$.

Find the reduction formula for

$$\int \cos^m x \sin(nx) dx.$$

| Turn Over |

4. Answer any two questions:

 $2 \times 5 = 10$

(a) Prove that the volume of the solid obtained by revolving the lemniscate $r^2 = a^2 \cos 2\theta$ about the initial line is $\frac{1}{2}\pi a^3 \left\{ \frac{1}{\sqrt{2}} \log \left(\sqrt{2} + 1 \right) - \frac{1}{3} \right\}$.

(b) If
$$I_{m,n} = \int_0^1 x^m (1-x)^n dx$$
,

where m and n are positive integers, then prove that $(m+n+1)I_{m,n} = nI_{m,n-1}$ and deduce that $I_{m,n} = \frac{m!n!}{(m+n+1)!}$.

(c) Evaluate the surface area of the solid generated by revolving the cycloid

 $x = a(\theta - \sin \theta), y = a(1 - \cos \theta)$ about the line y = 0.

Unit - III

5. Answer any three questions:

 $3\times2=6$

(a) Find the centre and foci of the conic

$$x^2 - 2y^2 - 2x + 8y - 1 = 0$$

(5)

- Find the equation of the sphere of which the circle xy + yz + zx = 0, x + y + z = 3 is a great circle.
- (c) Find the condition that the line

$$\frac{1}{r} = A\cos\theta + B\sin\theta \quad \text{may touch the conic}$$

$$\frac{1}{r} = 1 - e\cos\theta.$$

- (d) For what angle must the axes be turned to remove the term xy from $7x^2 + 4xy + 3y^2$.
- (e) Find the equation of cone whose vertex is origin and the base curve is $x^2 + y^2 = 4$, z = 2.
- 6. Answer any one question:

 $1 \times 5 = 5$

(a) If r be the radius of the circle $x^{2} + y^{2} + z^{2} + 2ux + 2vy + 2wz + d = 0,$ lx + my + nz = 0 then prove that $\left(r^{2} + d\right)\left(l^{2} + m^{2} + n^{2}\right) = \left(mw - nv\right)^{2} + \left(nu - lw\right)^{2}$ $+ \left(lv - mu\right)^{2} \text{ and find the centre.}$

- Show that the feet of the normals from the point (α, β, γ) to the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ lie on the intersection of the ellipsoid and cone $\frac{\alpha a^2 (b^2 c^2)}{x} + \frac{\beta b^2 (c^2 a^2)}{v} + \frac{\gamma c^2 (a^2 b^2)}{z} = 0$
- 7. Answer any one question:

 $10 \times 1 = 10$

5

(a) Show that the plane 3x - 2y - z = 0cuts the cones $21x^2 - 4y^2 - 5z^2 = 0$ and 3yz - 2zx + 2xy = 0

in the same pair of perpendicular lines.

Find the equation of the cylinder, whose generators are parallel to the straight line $\frac{x}{2} = \frac{y}{3} = \frac{z}{5}$ and which passes through the conic $z = 0, 3x^2 + 7y^2 = 12.$

(b) (i) Find the locus of the point of intersection of the perpendicular generators of the hyperboloid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1.$$

(ii) Reduce the equation

$$x^2 + 3y^2 + 3z^2 - 2xy - 2yz - 2zx + 1 = 0$$

to its canonical form and determine the type of quadratic represented by it.

Unit - IV

8. Answer any two questions:

- $2\times2=4$
- (a) Find the integrating factor of the differential equation

$$(2xy + 3x^2y + 6y^3)dx + (x^2 + 6y^2)dy = 0$$

- (b) Show that the general solution of the equation $\frac{dy}{dx} + Py = Q \quad \text{can be written in the form}$ y = k(u v) + v, where k is a constant and uand v are its two particular solutions.
- (c) Solve: $\frac{dy}{dx} + y \cos x = xy''$.

9. Answer any one question:

 $1 \times 5 = 5$

- (a) The population of a country increases at the rate of proportional to the number of inhabitants. If the population doubles in 30 years, in how many years will it triple?
- (b) Solve: $(px^2 + y^2)(px + y) = (p+1)^2$ [u = xy, v = x + y]